Differential cross section for Compton scattering

Sarah Alanazi

Jacan Chaplais

April, 2021

Outline

  • Motivation: a revolution in quantum theory?
  • Theoretical background
    • Kinematics
    • The invariant amplitude
  • Method
    • Evaluating the invariant amplitude
    • The phase space integral
    • Obtaining the differential cross section
  • Results and conclusions

Motivation

Quantum fields: a new approach

In 1927, Dirac proposed that quantum interaction between radiation and matter may be elevated to relativistic theory by quantizing electromagnetic field [1].

However, in 1930 Oppenheimer discovered perturbative approaches led to unphysical results beyond first order calculations, due to self-interaction [2].

In 1947 Bethe suggested a mechanism for handling the infinite terms, called renormalisation [3]. This sparked renewed interest in quantum fields.

Following this, the theory was developed rapidly, with Feynman’s diagrammatic contribution reducing the technical barrier for performing calculations [4].

A need for confirmation

In this talk we apply the theoretical work that has been done so far. Using these new calculation techniques, we attempt to recover Compton scattering.

This choice is symbolic of movement from semi-classical particle physics, to a full acceptance of the quantum theory [5].

Theory

Invariant amplitude

The processes which contribute to this interaction can be written as a scattering amplitude, expressed as the sum of Feynman diagrams.

\(i\mathcal{M} =\)
\(+\)

By applying the Feynman rules to these diagrams and grouping terms, we obtain \[ i \mathcal{M}=i {\color{#b5e48c} e^{2}} {\color{#ffe66d} \epsilon_{\mu \lambda^\prime}^{\ast} \left(k^{\prime}\right)} {\color{#ffe66d} \epsilon_{\nu \lambda}\left(k\right)} {\color{#fe6d73} \bar{u}^{s^{\prime}}\left(p^{\prime}\right) } \left( {\color{#5adbff} \dfrac{% numerator {\color{#b5e48c} \gamma^{\mu}}(\not{p}+k+m) {\color{#b5e48c} \gamma^{\nu}}} {(p+k)^{2}-m^{2}}}% denominator + {\color{#5adbff} \dfrac{% numerator {\color{#b5e48c} \gamma^{\nu}} \left(\not{p}-k^{\prime}+m\right) {\color{#b5e48c} \gamma^{\mu}}} {\left(p-k^{\prime}\right)^{2}-m^{2}}% denominator } \right) {\color{#fe6d73} u^{s}(p)} \]

Invariant amplitude cont’d

This unwieldy expression can be reduced a little by expanding the binomials in the denominator, and observing for the numerator \[ \begin{aligned} (\not{p}+m) \gamma^{\nu} u^{s}(p) &= \left(2 p^{\nu} - \gamma^{\nu}\not{p} + \gamma^{\nu} m\right) u^{s}(p) \\ &=2 p^{\nu} u^{s}(p)-\gamma^{\nu}\underbrace{(\not{p}-m) u^{s}(p)}_{ \text{Dirac equation} \implies 0 } \\ &=2_{} p^{\nu} u^{s}(p) \end{aligned} \]

which yields the invariant amplitude in the simpler form \[ i \mathcal{M}= -i e^{2} \epsilon_{\mu \lambda^\prime}^{\ast} \left(k^{\prime}\right) \epsilon_{\nu\lambda}(k) \bar{u}^{s^\prime}\left(p^{\prime}\right) \left( \frac{\gamma^{\mu} \not{k}\gamma^{\nu}+2 \gamma^{\mu} p^{\nu}} {2 p \cdot k} + \frac{-\gamma^{\nu} \not{k}^{\prime} \gamma^{\mu}+2 \gamma^{\nu} p^{\mu}} {-2 p \cdot k^{\prime}}\right) u^{s}(p)\text{.} \]

Kinematics

We consider two intertial frames to obtain our final result, so we write \(\mathcal{M}\) in terms of Mandelstam variables. These are constructed from the incoming and outgoing momenta of the interaction. \[ \begin{array}{lllllllll} s &=& (p+k)^{2} &=& p^{2}+k^{2}+2 p \cdot k &=& m^{2}+2 p \cdot k &=& m^{2}+2 p^{\prime} \cdot k^{\prime} \\ t &=& \left(p^{\prime}-p\right)^{2} &=& p^{\prime 2}+p^{2}-2 p \cdot p^{\prime} &=& 2 m^{2}-2 p \cdot p^{\prime} &=& -2 k \cdot k^{\prime} \\ u &=& \left(k^{\prime}-p\right)^{2} &=& k^{\prime 2}+p^{2}-2 k^{\prime} \cdot p &=& m^{2}-2 k^{\prime} \cdot p &=& m^{2}-2 k \cdot p^{\prime} \end{array} \] Casting transition amplitudes in terms of these manifestly Lorentz invariant quantities allows us to jump between frames with ease.

Centre-of-momentum frame

Inertial frame in which sum of spatial momenta is zero.

Centre-of-momentum frame diagram

Lab frame

Inertial frame in which the electron is at rest. This will also be the assumed rest frame for our particle detectors, hence lab frame.

Lab frame diagram

Differential cross section

Cross section, \(\sigma\), used to characterise interaction strength. Analogous to effective cross sectional area of particle through beam, while capturing relativistic and quantum dynamics information.

\[ \begin{aligned} \mathrm{d} \sigma=& \frac{1}{2 E_{\mathcal{A}} 2 E_{\mathcal{B}}\left|v_{\mathcal{A}}-v_{\mathcal{B}}\right|}\left(\prod_{f} \frac{\mathrm{d}^{3} p_{f}}{(2 \pi)^{3}} \frac{1}{2 E_{f}}\right) \\ &\left|\mathcal{M}\left(p_{\mathcal{A}}, p_{\mathcal{B}} \rightarrow\left\{p_{f}\right\}\right)\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p_{\mathcal{A}}+p_{\mathcal{B}}-\sum p_{f}\right) \end{aligned} \]

Constructed from phase space volume, invariant amplitude \(\mathcal{M}\), and momentum conserving Dirac delta terms.

Phase space integral

The phase space volume for a two particle collision may be defined by the integral,

\[ \int \mathrm{d} \Pi_{2}=\int \frac{\mathrm{d}^{3} k^{\prime}} {(2 \pi)^{3} 2 E_{k^{\prime}}} \frac{\mathrm{d}^{3} p^{\prime}}{(2 \pi)^{3} 2 E_{p^{\prime}}}(2 \pi)^{4} \delta^{(4)}\left(p+k-k^{\prime}-p^{\prime}\right) \text{.} \]

By making careful substitutions, and using fundamental theorem of calculus, can extract derivative of cross section wrt specific quantities, eg. \(\mathrm{d}\sigma / \mathrm{d}\cos\theta\).

The phase space of an interaction carries its kinematic information.

Evaluating invariant amplitude

Spin averages and polarisation sums

In the unpolarised case, we don’t know the spins of particles. The electron orientations are random, so we average over initial particles, and sum over final particles.

\[ \langle |\mathcal{M}|^2 \rangle = \dfrac{1}{4} \sum_\text{spins} | \mathcal{M} |^2 \]

We apply the replacement \(\sum^2_{\lambda=1} \epsilon^\ast_{\mu\lambda} \epsilon_{\nu\lambda} \to - g_{\mu\nu}\), and the property of Dirac spinors, \(\sum_{s=1}^{2} u^{s}(p) \bar{u}^{s}(p) = (\not{p}+m)\), to our spin averaged invariant amplitude, to obtain

\[ \begin{aligned} \frac{1}{4} \sum_{\text {spins}}|\mathcal{M}|^{2}= \dfrac{e^{4}}{4} \bigg[ &\left(\not{p}^{\prime} + m\right) \left( \dfrac{% numerator \gamma^{\mu} \not{k} \gamma^{\nu} + 2 \gamma^{\mu} p^{\nu}} {2 p \cdot k}% denominator + \dfrac{% numerator \gamma^{\nu} \not{k}^{\prime} \gamma^{\mu} -2 \gamma^{\nu} p^{\mu}} {2 p \cdot k^{\prime}}% denominator \right) \\ & \left(\not{p} + m\right) \left( \dfrac{% numerator \gamma_{\nu} \not{k} \gamma_{\mu} + 2 \gamma_{\mu} p_{\nu}} {2 p \cdot k}% denominator + \dfrac{% numerator \gamma_{\mu} \not{k}^{\prime} \gamma_{\nu} - 2 \gamma_{\nu} p_{\mu}} {2 p \cdot k^{\prime}} % denominator \right) \bigg] \end{aligned} \]

Working out the traces

Contracting covariant and contravariant indices yields the spin averaged invariant amplitude as a sum of four traces.

\[ \frac{1}{4} \sum_{\text {spins}}|\mathcal{M}|^{2} = \dfrac{e^4}{4} \left[ \dfrac {\operatorname{Tr} A} {\left(2 p \cdot k\right)^2} + \dfrac {\operatorname{Tr} B} {\left(2 p \cdot k\right) \left(2 p \cdot k^{\prime} \right)} + \dfrac {\operatorname{Tr} C} {\left(2 p \cdot k^{\prime} \right)\left(2 p \cdot k\right)} + \dfrac {\operatorname{Tr} D} {\left(2 p \cdot k^{\prime} \right)^2} \right] \]

Clifford algebra provides simplifications, eg. half the traces contain odd number of \(\gamma^\mu\) matrices, so are identically zero. The traces are also related, such that \(\operatorname{Tr} B = \operatorname{Tr} C\), and similarly \(\operatorname{Tr} D=\operatorname{Tr} A \; \left(k \leftrightarrow-k^{\prime}\right)\). Applying this gives

\[ \begin{aligned} \frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}= 2 e^{4} \left[ \frac{m^2 - u}{s - m^2} + \frac{s - m^2}{m^2 - u}\right. +&\left. 2 m^{2}\left( \frac{2}{s - m^2} - \frac{2}{m^2 - u} \right) \right. \\ +& \left. m^{4}\left( \frac{2}{s - m^2} - \frac{2}{m^2 - u} \right)^{2} \right] \end{aligned} \]

Phase space integral

Phase space

To evaluate the phase space integral introduced earlier \[ \int \mathrm{d} \Pi_{2}= \int \frac{\mathrm{d}^3 k^{\prime}}{(2 \pi)^{3} 2 E_{k^{\prime}}} \frac{\mathrm{d}^3 p^{\prime}}{(2 \pi)^{3} 2 E_{p^{\prime}}} (2 \pi)^{4} \delta^{(4)}\left(p + k - k^{\prime} - p^{\prime}\right) \]

The momentum conserving Dirac delta reduces the calculation to a two dimensional integral, rather than a six dimensional one. We split into spatial and temporal momentum components \[ \delta^{(4)}\left(p + k - k^{\prime} - p^{\prime}\right) = \delta\left( E_\mathbf{p} + \omega - E_\mathbf{p}^\prime - \omega^\prime \right) \delta^{(3)}\left( | \mathbf{p} | + | \mathbf{k} | - | \mathbf{p}^\prime | - | \mathbf{k}^\prime | \right) \]

This may then be evaluated for a specific integration measure, for instance we can substitute the solid angle \[ \mathrm{d}^3 p = | \mathbf{p} |^2 \mathrm{d}p \; \mathrm{d}\Omega \]

In centre-of-momentum frame

In the centre-of-momentum frame, 4-momenta of incoming and outgoing particles are \[ \begin{array}{cccc} p = (E, -\omega\mathbf{\hat{z}}) & k = (\omega, \omega \mathbf{\hat{z}}) & p^\prime = (E, \mathbf{p}^\prime) & k^\prime = (\omega, \omega \sin{\theta}, 0, \omega \cos{\theta}) & \end{array} \] and the phase space integral takes the form \[ \int \mathrm{d} \Pi_{2} = \frac{1}{16 \pi^{2}} \int \mathrm{d} \Omega \frac{\omega}{E_{\text{CoM}}} \]

In lab frame

Whereas in the lab frame, the 4-momenta are given by \[ \begin{array}{cccc} p = (m, 0) & k = (\omega, \omega\mathbf{\hat{z}}) & p^\prime = (E^\prime, \mathbf{p}^\prime) & k^\prime = (\omega^{\prime}, \omega^{\prime} \sin{\theta}, 0, \omega^{\prime} \cos{\theta}) & \end{array} \]

and the phase space integral is obtained as

\[ \int \mathrm{d} \Pi_{2} = \dfrac{1}{16 \pi^2} \int \mathrm{d}\Omega \frac{\omega^{\prime \; 2}}{m \omega} \]

Obtaining the cross section

Function of squared momentum transfer

We may now bring our equations for the phase space integral and the invariant amplitude together. Substituting the integration measure, \(\mathrm{d} t = -2\omega^2\mathrm{d}\Omega / 2\pi\) and writing in Mandelstam variables in the centre-of-momentum frame, we obtain \[ \begin{aligned} \dfrac{\mathrm{d}\sigma\left(s, t\right)}{\mathrm{d}t} = \dfrac{2\pi\alpha^2}{\left(s - m^2\right)^2} \left[ \frac{s + t - m^2}{s - m^2} + \frac{s - m^2}{s + t - m^2}\right. +&\left. 2 m^{2}\left( \frac{2}{s - m^2} - \frac{2}{s + t - m^2} \right) \right. \\ +& \left. m^{4}\left( \frac{2}{s - m^2} - \frac{2}{s + t - m^2} \right)^{2} \right] \end{aligned} \]

Expressing in terms of scattering angle, \(t = \frac{ -2\left(\frac{s-m^{2}}{2 m}\right)^{2}(1-\cos \theta) } { 1+\left(\frac{s-m^{2}}{2 m^{2}}\right)(1-\cos \theta) }\), and applying the range of \(\cos\theta\) to this equation yields the domain for \(\mathrm{d}\sigma / \mathrm{d}t\) \[-\dfrac{\left(s - m^2\right)^2}{s} \leq t \leq 0\]

Function of angle

We perform the same procedure in the lab frame, using integration measure \(\mathrm{d}\Omega = -2\pi\mathrm{d}(\cos\theta)\), to obtain the angular dependence.

\[ \begin{aligned} \dfrac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \dfrac{1}{4m\omega} \dfrac{1}{8\pi} \dfrac{\omega^{\prime \; 2}}{\omega m} 2 e^{4} \left[ \frac{m^2 - u}{s - m^2} + \frac{s - m^2}{m^2 - u}\right. +&\left. 2 m^{2}\left( \frac{2}{s - m^2} - \frac{2}{m^2 - u} \right) \right. \\ +& \left. m^{4}\left( \frac{2}{s - m^2} - \frac{2}{m^2 - u} \right)^{2} \right] \end{aligned} \]

Writing in terms of photon momenta obtains the famous Klein-Nishina formula [6]

\[ \dfrac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{\pi \alpha^{2}}{m^{2}} \left(\frac{\omega^{\prime}}{\omega}\right)^{2} \left[\frac{\omega^{\prime}}{\omega}+\frac{\omega}{\omega^{\prime}}-\sin ^{2} \theta\right] \]

Results

QED prediction for \(\rm{d}\sigma/\rm{d}\cos\theta\)

Showing transition from wave-like behaviour of electromagnetic radiation to particle-like as collision energy increased.

QED prediction for \(\rm{d}\sigma/\rm{d}t\)

Wave-like behaviour in low energy regime, predicted by Thomson scattering [7].

QED prediction for \(\rm{d}\sigma/\rm{d}t\)

Scattering behaviour shows influence of photon imparting impulse to electron.

QED prediction for \(\rm{d}\sigma/\rm{d}t\)

Scattering behaviour dominated by particle-like collisions and momentum transfer.

Conclusion

In this work, we have used the new Quantum Electrodynamics to recover the known scattering relationship between light and electrons, as written down by Compton.

The processes were interpreted via tree-level Feynman diagrams, at the lowest order.

Future work may involve higher order calculations, and the inclusion of loops, to determine if this formulation makes new predictions about this interaction.

Thank you for your attention, we welcome any questions.

References

[1] Dirac PAM. Quantum theory of emission and absorption of radiation. Proc Roy Soc Lond A 1927;114:243. https://doi.org/10.1098/rspa.1927.0039.

[2] Oppenheimer JR. Note on the Theory of the Interaction of Field and Matter. Physical Review 1930;35:461–77. https://doi.org/10.1103/PhysRev.35.461.

[3] Bethe HA. The Electromagnetic Shift of Energy Levels. Physical Review 1947;72:339–41. https://doi.org/10.1103/PhysRev.72.339.

[4] Feynman RP. The Theory of Positrons. Physical Review 1949;76:749–59. https://doi.org/10.1103/PhysRev.76.749.

[5] Compton AH. A quantum theory of the scattering of x-rays by light elements. Phys Rev 1923;21:483–502. https://doi.org/10.1103/PhysRev.21.483.

[6] Klein O, Nishina T. Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift Fur Physik 1929;52:853–68. https://doi.org/10.1007/BF01366453.

[7] Thomson JJ, Thomson GP. Conduction of electricity through gases. 2nd ed. Cambridge University Press; 1906.